首页> 外文OA文献 >Fusing deep learned and hand-crafted features of appearance, shape, and dynamics for automatic pain estimation
【2h】

Fusing deep learned and hand-crafted features of appearance, shape, and dynamics for automatic pain estimation

机译:融合外观,形状和动态特性的深度学习和手工制作功能,以进行自动疼痛评估

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Automatic continuous time, continuous value assessment of a patient's pain from face video is highly sought after by the medical profession. Despite the recent advances in deep learning that attain impressive results in many domains, pain estimation risks not being able to benefit from this due to the difficulty in obtaining data sets of considerable size. In this work we propose a combination of hand-crafted and deep-learned features that makes the most of deep learning techniques in small sample settings. Encoding shape, appearance, and dynamics, our method significantly outperforms the current state of the art, attaining a RMSE error of less than 1 point on a 16-level pain scale, whilst simultaneously scoring a 67.3% Pearson correlation coefficient between our predicted pain level time series and the ground truth.
机译:自动连续时间,从面部视频对患者疼痛的连续价值评估一直是医学界所追求的。尽管最近在深度学习方面取得了进步,但在许多领域都取得了令人瞩目的成果,但由于难以获得相当数量的数据集,因此疼痛评估可能无法从中受益。在这项工作中,我们提出了手工制作和深度学习功能的组合,可以在小样本环境中充分利用深度学习技术。在编码形状,外观和动力学方面,我们的方法大大优于当前技术水平,在16级疼痛量表上的RMSE误差小于1点,同时在我们预测的疼痛水平之间得分为67.3%皮尔逊相关系数时间序列和基本事实。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号